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Abstract. The total energy of a system of non-interacting particles is explicitly given as a 
function of the total angular momentum of the system, J. Such a representation is also 
achieved when two-body interactions of central force type are present. Comparison with 
the rigid body case leads to interesting conclusions concerning the potential energy of the 
system. 

1. Introduction 

The manifestations of collective rotational motion appear frequently in the study of 
physical systems of particles. Usually ad hoc phenomenological Hamiltonians are 
employed in these cases. However, for systems of interacting particles, it will be 
interesting to understand the occurrence of collective rotational motion without 
assuming it from the start, as in the usual phenomenological method, especially as the 
same system can present aspects where the particles seem to move independently (for 
instance, in nuclear physics). 

The collective variable associated with rotational motion is obviously the angular 
momentum around the centre of mass, J.  Since two components of J cannot belong to 
the same canonical set (Goldstein 1964), we must choose J, the norm of J ( J =  
(JZ + J :  + J:)”’), and one of its components, say J,. The conjugate momenta of J and 
J, in classical and quantum mechanics can be found elsewhere (Sau 1978). Then, in 
theory, the explicit expansion of a rotationally invariant Hamiltonian in powers of J can 
be given following, for instance, a method outlined by Villars (1965) and Rowe (1967). 

Let us first consider the simple case of two spinless particles with central interaction. 
The ‘collective’ rotational variable is the norm L of the orbital momentum around the 
centre of mass, and the Hamiltonian in the centre of mass takes the form 

H = A + BL’. (1) 
Here A and B do not depend on L but on ‘intrinsic’ variables (here r and p r ) .  Now, if a 
set of states is such that (A) and (B) remain approximately constant, one says that they 
form a rotational band with the usual 1(1+ 1) pattern. 

The aim of this paper is to generalise an expansion of the type (l), where the 
dependence of H on J is explicitly given, to many-particle systems. This problem is 
solved here in classical mechanics. The case in which the Hamiltonian is the total 
kinetic energy is considered, and the presence of a potential energy of the kind 

V = 1 vij(lri - rjl) 
i>j 
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is then examined. Obviously we cannot claim that the quantum result would be 
obtained by simple quantisation of the classical one. However, apart from the relative 
ease of formulation, the classical derivation is interesting since it has been shown (Sau 
1978) that, for sufficiently large angular momentum, the quantum conjugate variable of 
J approximates the classical one; then one may expect that the quantisation of the 
classical solution will give the quantum one approximately, at least for large angular 
momentum. Our basic tool here will be the classical Poisson bracket (CPB), denoted by 
{,}. Our approach, however, will be different from that of Villars (1965) and Rowe 
(1967), for, as we shall see, an expansion in powers of J does not converge in general. 

2. The kinetic energy expansion 

2.1. The kinetic energy 

We start from the kinetic energy of N particles in the centre of mass, 

P’ H = C - ,  
i = l  2mi 

with 
N N 2 p i = o ,  miri = 0. 

i = l  i = l  

Here ri is the position vector of particle i relative to the centre of mass G, and Pi is its 
linear momentum. G will be the centre of a Cartesian system with unitary vectors 
(el, e2, e3), the directions of which are fixed in space. Let us call J the total angular 
momentum around the centre of mass, given by 

N 

i = l  
J =  1 riAPi. 

We then obtain the CPBS 

{(rim ek), (Pj el)} = (6ij - mj/M)Skf, 
(2) 

where n is any constant vector and M is the total mass. 
In the following we shall need CPBS of the kind {F(ri), Pi}, where F is a function of 

the ri, j = 1,2,  . . . , N. Owing to the constraint on the ri, F is actually a function of 
( N  - l)rj only. As the result is independent of the chosen r ,  we shall take the first N - 1 
throughout this paper. The CPBS can be evaluated with the help of the first of the 
relations (2) as 

{ri, J .  n }  = nAri ,  {Pi, J .  n }  = n APi, 

~ - 1  aF 
{F,Pix}=  

Since similar expressions are obtained for Piy and Pi,, we may write 

N-1 

{F, Pi} = vs( sii - 2). 
j = l  

(3) 
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2.2. The canonical set 

We recall now the canonical set of variables connected with the rotational problem (Sau 
1978). Let u3 be a unitary vector, which we shall call a vector attached to the 
many-body system. The vector u3 is a function of the ri and satisfies 

(4) {u3, J .  n }  = nAu3. 

We note that u3 can be a particular ri/lril or can be defined more symmetrically (a 
principal direction of the inertial tensor, for instance). 

We define now the projection p of u3 on the plane orthogonal to J, namely 

p = ~3 - J3J/J2, ( 5 )  

with J3 = ( J .  u3). Note that p J = 0 and (p, J .  n} = n Ap. To complete our notation we 
use X, Y, 2 for the projections of p on el, e2, e3 respectively, u1 and u2 for the unitary 
vectors which complete the Cartesian frame attached to the many-body system (with 
ulAu2 = u3 and cyclic permutation), and J1, J2, J3 for the projections of J on these axes. 

It has been shown (Sau 1978) that the three pairs of conjugate momenta which form 
the canonical set for the description of rotational motion in classical mechanics are 
(J, a), (J,, P ) ,  ( J 3 ,  Y), with 

a = tan-'[ZI/( YJ, -XJ , ) ] ,  p = tan-'(J,/J,), y = tan-'(J1/Jz). (6) 

Indeed we get {a, J }  = 1, {p, J z } =  1, {y,  J3}= 1, with all other CPBS being zero, and the 
necessary relations for a canonical set are then fulfilled. 

Since H is rotationally invariant, one can see immediately that U, H} = {J,, H }  = 0,  
and thus and J, are both cyclic coordinates. This fact simply shows the well-known 
degeneracy of a rotationally invariant Hamiltonian. Note that a is also cyclic, since 
{J, H} = 0.  

Apart from the three pairs above, other variables (usually called intrinsic) are 
obviously necessary for completing the canonical set. The derivation which follows 
does not depend on them, however. 

2.3. The J dependence of H 

The Hamiltonian H is a function of all the variables of the canonical set. Our derivation 
uses the fact that a CPB like {a, H }  is equivalent to the partial derivative aH/aJ. 

In the following we shall make an extensive use of the relation (A5) derived in the 
Appendix. With U defined as U ={u3 ,  H}, relation (A5) leads to the differential 
equation for H 

a H / a J = { a ,  H ) = [ J / ( J 2 - J 3 ) ] ( u 3 A ~ )  .J. (7) 

Taking account of relation (3) we obtain the expression for o in component form as 

or  more compactly as 
N-1 1 

U =  --((Pi.Vi)U3. 
i = l  mi 
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Let us now deal with S = ( u 3 A u )  . J. Defining w as w = {u3, S}, we obtain 

as /aJ={a,  s } = [ J / ( J ~ - J ~ ) ] ( u ~ A w )  .J .  (9) 

w ={u3, (u3Au) J } =  ( u ~ A u ) A u ~ + { ~ ~ ,  (u3Au)) J. (10) 

The expression for w is 

Since the Pi are present in the expression for U ,  the CPB above can be evaluated using 
relation (3). This evaluation gives rise to a 3 x 3 matrix A, such that 

or more compactly 

Here the scalar product is only between the V’s. Then, the expression for w in (10) is 

w = -A ( ~ 3 r \ J )  + U - ~ 3 ( ~ 3 .  U ) ,  

and thus 

J .  ( u ~ A w )  = J .  B .  J + ( u ~ A u )  J. 

Here B is a 3 X 3 matrix, written formally as 

B = -WA(AAW) 
or in component form as 

Bxz = - u ~ ~ ( A Z ~ U ~ ,  -A43 , )  + UJ,(A+~,  - A y + 3 , ) ,  

and has the properties 

B . u 3 = 0 ,  B + = B  since A f = A .  

The differential equation for S then has the form 

aS/aJ=[J/ (J*-J: )] (J .  B . J + S ) .  (15) 

We now let F = J .  B .  J. The problem for F is simpler, since the Pi do not occur in B. 
Again using the relation (A5) we obtain 

aF/aJ = {a, F }  = [ J / ( J z  - J:  ) ] (u~N) J 

with f = {u3,  F}.  Formally f = 2(J .  B ) A u 3  or explicitly 

fx = 2[(JxBxy + J$,, + J Z B z y h s ,  -(JxBxz + J y B y z  +Jd%z)u3Yl.  
Then using (14) (Bu3 = 0), 

aF/aJ = [2J / (J2  - J:  )IF, 
the solution of which is 

F = J .  B .  J =  c(J’-J:). (16) 

The result (16) can be used in (15), and the differential equation for S is now 

as/aJ = [ J / ( J 2  - J:  )IS + CJ, 
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the solution of which is 
s=  c ( J 2 - J : ) + D ( J 2 - J 3 )  2 1/2 . (17) 

The quantities D and C, which are integration constants, are independent of J. The 
result (17), used in (7), leads to 

aH/aJ = cJ+D[J/(J2-J:)1/2]. 

Therefore the definitive result for H is 

H = CJ2/2 + D(J2 - J : ) l l 2  + E, 

where E is independent of J. In order to obtain a more homogeneous expression we 
shall write H as 

H = &(Jz - J :  ) + D(J2 - J :  )1’2 + E. (18) 

The quantity $CJ:, independent of J, can be added to E. 
The relation (18) is exact and represents the most general expression for H written 

explicitly as a function of J. It generalises relation (1) of the two-body Hamiltonian. 
The quantities C, D, E can be written by identification, i.e. successively 

J . B . J  S - J . B . J  J . B .  J E = H + - - S .  (19) 
( J 2  - J ;  )I/* ’ 2 

C = -  D =  J ~ -  J :  ’ 
Since the ‘intrinsic’ variables are not specified, we can say nothing else about C, D, E. 
In (19) they are given as functions of the original ri; this would be an advantage for 
calculations involving independent particle wavefunctions, as is often the case in 
nuclear physics. Although J appears in (19), C, D, E are independent of J. 

We can remark, from relation (18), that an expansion in powers of J does not 
converge in general, and this surely remains true in quantum mechanics. An expansion 
in powers of J-’ must be looked for instead. 

Finally, if we add to the kinetic energy a potential energy V such that {a, V} = 0, for 
instance of the kind V = ELT1 Vii(lri -ri/), this potential energy is simply added to E 
and the expression for H as a function of J remains that given by relation (18). 

It seems normal that J, in (18), occurs at most with the power two, since H is 
quadratic in the Pi. Attempts to eliminate the ( J 2  - J :  ) l l 2  term (by cancellation of D) 
have failed up to now. Indeed, the quantities C, D, E depend only on the chosen system 
ul, u2, 243, and it has not been possible to find a particular system where D = 0. 

2.4. Special choices for u3 

Here we shall calculate the expressions of C and D (relations (19)) for two particular u3: 
first u3 is taken as the direction of a given particle, say u3 = rl/lrll, and after as a 
principal direction of the inertial tensor, in connection with the problem of a rigid body. 

2.4.1. u3 = rl/Irll. With expression (11) we obtain A in dyadic notation as 

A = (l /mlr?)(l  -ml/A4)(r;I-r lr l ) ,  

where I is the unit dyadic. Relation (13) leads to B = A. Then 

c = (1/mlr;)(1- m l / ~ ) .  
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Using (8’) we find 

s = ( l / m l r i ) j l  . J, 

where jl = rlAP1. Finally 

D = ( l / m l r f ) u l .  J- (1 - m l / M ) ( J 2 -  J:)](J2-J:)-1’2. 

2.4.2. u3 is a principal direction of the inertial tensor. Let the ui be eigendirections of the 
quadrupole tensor Q;  in dyadic notation 

The principal momenta of inertia are related to the A i  by 

I 1  = A2fA3, I 2  = A 1  + A3,  I 3  = A 1  + A2. 

In order to obtain A and B (relations (11) and (13)) we need the derivatives of the 
vector u3, like au3/axj( j = 1 , 2 ,  . . . , N - 1). Since u3 is a unitary vector, a derivative like 
au3/axj is orthogonal to u3 and can then be expanded on u1 and u2. The coefficients of 
the expansion can be found using relations (20). We have 

aQ au3 ah3 au3 
axj axi axi axi 
-. ~3 + Q.-=- ~3 + A 3  -. 

Taking the scalar product with u1, for instance, we find 

The quantity (ul . au3/axj) is precisely the coefficient of u1 in the expansion of au3/axi. 
We obtain aQ/axj from expression (20) for Q, 

the other derivatives being zero. Then 

A similar calculation can be made for ( u 2 .  au3/axj). Finally Vju3 can be written in 
dyadic form as 

+- mi [((rj-riv) u 3 ) ~ 2 ~ 2 + ( ( r j - r N )  a u ~ ) u ~ u ~ I .  (21) 
A 3 - A 2  

Relation (21) can be used in (11); taking account of X z 1  mjrj = O  and of 
X K 1  miri(rj. ui) = Aiui, we obtain A in dyadic notation as 

A 3 + A l  A 2 + A 3  

(h3-AZ)’ A =  2 U l U l +  
( A 3  - A 1) 
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Then B, from (13), is given by 

Therefore 

and C, defined by (19), is given by 

where y is the conjugate momentum of J3 (relation (6)). 

S = (us A U). J, and then D is obtained from relation (19) as 
Equation (21) can also be used in (8’) in order to obtain the expression for 

(24) 

Ji 
J2 (ri3Pil+rilPi3)-- (ri3Pi2+ri2Pi3) - C(J2-J:)](J2-J:)-1/2, 

A 3 - A 2  

where rii = ri. uj and Pi, = Pi. UP 

It will be interesting to compare these results with those of the rigid body, since the 
picture of collective rotations of a system of particles is more or less connected with rigid 
body motion. 

3. The rigid body 

The canonical set (relation (6)) can be used to reduce the rigid body Hamiltonian. If the 
ui are the principal directions of the inertial tensor, we have 

H = J:/211+ J;/212 + J:/213. (25) 

The li are the principal momenta of inertia; using (6) we obtain 

H = J:/213 + f(J2 - J: )( 1/211+ 1/212) + f(J2 - J: )( 1/212 - 1/211) COS 27. (26) 

It can be seen easily that another choice for the ui would give a ( J z  - J3 ) term in (26). 
In any case J,, B and CY are cyclic variables and do not appear in H. J is a constant of 
motion. The problem is then of one degree of freedom. The solution can be reached 
with the use of Jacobian elliptic functions, taking account of the conservation of the 
energy which gives a relation between J3 and y. In fact we again find known results (see 
Whittaker 1965), but in a more straightforward and, from a fundamental point of view, 
more attractive way. 

We can now compare expression (26) with the decomposition (18), with C and D 
values given by (23) and (24). In (26) we have D = 0, which is not the case in (24). The 
functions C in (26) and (23) are different but have the same structure; indeed 

C(rigid body) = $(1/211+ 1/212) +$cos 2y(1/212- 1/211), 

2 112 

C(partic1es) = 5 [ 1 ~ / ( r ~ - ~ ~ ) ~ + ~ ~ / ( 1 ~ - 1 ~ ) ~ ] + 5 ~ 0 ~  2y[12/(1~ -13)2-~1/ (12-13)2] .  
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We have seen that a potential energy of the kind V = Vii(lri - ril) does not 
change the values of C and D. Hence a rigid body must be seen as a system of particles 
with the potential energy depending not only on the positions but also on velocities. 
This potential energy is itself a function of J such that it will give the good rigid body 
result when added to the kinetic energy. This potential energy is defined simply by 
identification. We can write 

(27) v = $ C ~ ( J ~  - J :  ) + D’(J*- J :  )1/2 + E’, 

with 

C‘=$(1/211+ 1/212)+$COS 2y(1/212- 11211)- c, 
D’= -D, E’ = J:/213 - E, 

where C, D, E are the quantities issuing from the kinetic energy expansion. 

4. Conclusions 

We have been able to give, in explicit form, the dependence on J of a large class of 
Hamiltonians. The comparison with the rigid body case led to interesting conclusions 
concerning the potential energy. In fact collective rotational motion may not be of the 
rigid body type. The potential energy (27) gives rigid body type rotational motion, but 
one can think of different possibilities which would cause other kinds of collective 
rotational motion. 

Appendix 

Let S be a scalar: 

{J,, S }  = {J,,, S }  = {Jz, S }  = 0. 

We look for the expression of {CY, S}, where CY is the conjugate momentum of J, as given 
by (6); we obtain 

(YJx - X J y ) 2  Z J  
YJ, - X J ,  1’ + 2’ J 2  YJ, - XJ,, ’ ’1 * 

{a, SI = 

X ,  Y ,  Z are the components of p given by ( 5 ) ;  since p . J = 0 and p2  = ( J 2  - J:  )/ J 2 ,  we 
find 

( Y J ,  - x J , J 2 + Z 2 J 2 = p 2 ( J :  + J s ) =  ( J 2 -  J : ) ( J :  + J ; ) / J 2 .  (A21 

The CPB in (Al) leads to 

Let us examine the bracket of the preceding relation. If we call V the vector V = (p, S}, 
we obtain 
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But p is orthogonal to J ;  then 

J .  V = J .  (p, S} = { J .  p, S} = 0. 

As the two vectors p and V are orthogonal to J ,  it follows that (pA V) is along J ;  then 
we can write 

p A v = (J /Jz ) [ (p  A v) J ]  

and 

(P A V)JX + (P A V),J,  = [ ( J ' X  +J:: )/JZl[(P A V) JI. 
This last result, together with relation (A2), leads to 

{a, s} = [J/J2 - J :  ) ] (p A V) . J. 

If now we let 

v = {u3, SI 

v = U - ( J .  0 ) J / J Z .  

then 

Therefore, with expression (5) for p, we find 

{a, s}=[J/(J2-J:)](U A U) .J.  
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